NS

IDC-NEU

wmo AR ERRE HUAWEI

NeutronStream: A Dynamic GNN Training Framework
with Sliding Window for Graph Streams

Chaoyi Chen, Dechao Gao, Yanfeng Zhang, Qiange Wang,
/henbo Fu, Xuecang Zhang, Junhua Zhu, Yu Gu, Ge Yu

Northeastern University, China
Huawei Technologies Co., Ltd.

VLDB 2024

ll Dynamic Graph Neural Network

s 11
representation

Initial graph

Dynamic Graph Neural Networks

L

Node embedding

L

Predictions

L L L

Dynamic link prediction Node classification Event time prediction

ll Execution Pattern of Dynamic GNN

Forward computation (1-event):

Input data: cé% Y t
i
(3
OO 01D
2y ZD €1
UpdateGraph » GetSubgraph

5,

€7

£

Aggregate

€3

UpdateEmb

PropUpdate

ll Execution Pattern of Dynamic GNN

Forward computation (1-event):

(0)

Input data: _Zi u:%; t
i
(3
11T Oorm—™
2y ZD €1
UpdateGraph » GetSubgraph

5,

€7

£

Aggregate

€3

UpdateEmb

PropUpdate

ll Execution Pattern of Dynamic GNN

Forward computation (1 -event):

Input data:

(0) (0)
1

40

I UpdateGraph I—-» GetSubgraph

5,

€7

£

Z(1) Z(O)
LI [L1
©) 9
o

Aggregate

€3

UpdateEmb

PropUpdate

ll Execution Pattern of Dynamic GNN

Forward computation (1—even’r):

(0) (0)

Input data: =

0)

G

€7

£

UpdateGraph GetSubgraph

Aggregate

é[%}

€3

(0)

N ”
2) &

[TT] |
(0) (0) (0) (0)

UpdateEmb

PropUpdate

ll Execution Pattern of Dynamic GNN

Forward computation (1-event):

€3

UpdateEmb

PropUpdate

Input data: 7y Eé; t G
i
(3
I I R I
€1 e,
UpdateGraph GetSubgraph Aggregate
0
Z(1) Z(O) Z(10) ZE;O)]_[1
| | || [TI1] 0 EEEE EEEE
\]
€1 $ |$ } \ 1
ORE D B (
[IT11] [T [(IT11] [ITI1] EEEE 11 [0 [
0 0

ll Execution Pattern of Dynamic GNN

Forward computation (1-event):

Input data: Eé% Eé; t 5 G
i %
@ @
y 29 Zy €1) e 3

UpdateGraph » GetSubgraph Aggregate UpdateEmb PropUpdate

0) 0 0 0
AN,)

4 @
e1 $ i
2 G

(0) (0) (0) (0) (0) (0) (0)
w Z2 Z3 Z, Z3 Z3 Z; Z3

0
zy H Hy

R -t
i TIP]

0
zy'H; H,

@@

iSw

ll Execution Pattern of Dynamic GNN

Forward computation (1-event):

Input data: mg); Eé; t 5 G
i (D
9} 2
y 29 Zy €1) e 3
UpdateGraph » GetSubgraph Aggregate o UpdateEmb PropUpdate
(0) (0) (0) (0) (0) <1>
Z; Z, Zy Z, H, Z, 0
111 [Tl [(T11] T I 1] Zlﬂlﬂg

Q & D & SEE A A
% NS E 46 P \
(2 (3 (3 EEEA%

|
(0) (0) 0 0 0 0 0 (0) 0 0
L T D R 2 2

| (I11] [0 111 (1117 [OI1r CIrmo LITT] [T IZIZIZIZI

I Characteristic: Spatial-Temporal Dependency

® Spatial Dependency: a node status depends on its neighbors

® Temporal Dependency: a node status depends on its previous status

Temporal Dependency

Spatial
Dependency

10

I Characteristic: Spatial-Temporal Dependency

® Spatial Dependency: a node status depends on its neighbors

® Temporal Dependency: a node status depends on its previous status

Temporal Dependency

The complex spatial-temporal dependencies among events

pose new challenges for designing dynamic GNN frameworks.

T/ - T I i3
Spatial ‘
Dependency

11

l Challenge 1: The fraining method needs to capture
real-time siructural information

Key Observations : Events in the same area should update parameters
collaboratively to better capture spatial dependencies

Update event stream
e,||e,|es]|e,||Es||€| ==+

 —_—_———————— — — — — —

Dynamic social network graph

=

Six events are concentrated
INn one ared

12

l Challenge 1: The fraining method needs to capture
real-time siructural information
The traditional batched training method forcibly cuts off the event stream
and ignores the spatial locality between events

Update event stream;|
|
e,||e,]|eshe,]|es||] " =

————————————————

Dynamic social network graph

l Challenge 1: The fraining method needs to capture
real-time siructural information

The traditional batched training method forcibly cuts off the event stream
and ignores the spatial locality between events

Update event stream;|

————————————————

| & M

aa” | ©2 e. |

1 | ! ;/6 |
’\ e; @M

Dynamic social network graph

l Challenge 1: The fraining method needs to capture
real-time siructural information

The traditional batched training method forcibly cuts off the event stream
and ignores the spatial locality between events

Update event stream;|

————————————————

:’ e, M | Model
° B i accurac
> e f—’/’ T | decrease
KA : 2 e5 [
.ﬂ. i ! ;/6 i
\ € E.m

Dynamic social network graph

15

l Challenge 2: The temporal dependency nature
makes parallelism optimization hard to design

® Temporal Dependency: a node status depends on its previous status
Existing frameworks sequential iterative processing

Update event stream

————————————————

Dynamic social network graph

Sequential

Epoch 1

FP(e,)

FP(e,)

FP(e,)

FPle,)

FP(es)

16

l Challenge 2: The temporal dependency nature
makes parallelism optimization hard to design

® Temporal Dependency: a node status depends on its previous status
Existing frameworks sequential iterative processing

Update event stream
e.lle,|eslle,]es||€g| "+

————————————————

| e, M |

ﬁ : ? 9 — > :

-I. | - :
e e4 '

am 2 / TeS i

ﬂ. i ! €6 |
—_— |

’\ e; M

Dynamic social network graph

Sequential

DyRep on GitHub dataset {

| Epoch 1

1 FP(el) €, FP(ez) e, FP(e3) €, FP(94) es| FP(es) |es| FP(es) | BP

Single thread for an epoch : 60.45s

20 threads for an epoch : 60.89s

17

l Challenge 2: The temporal dependency nature
makes parallelism optimization hard to design
® Without Temporal Dependency : Ignore time, execute events in parallel

® With Temporal Dependency . Keep time, execute events chronologically

€

)

€

(a) Without Temporal Dependency

€1

€

» time

e,

(b) With Temporal Dependency

18

l Challenge 2: The temporal dependency nature
makes parallelism optimization hard to design

® Without Temporal Dependency : Ignore time, execute events in parallel
® With Temporal Dependency . Keep time, execute events chronologically

» time

—— Without Temporal Dependency = ———— With Temporal Dependency
80 100
e
1 2
80 -
€, 70 S
63 < 60 - <
- 40
(o-) Without Temporal Dependency NV W
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Number of Epochs Number of Epochs
e 1 e 9 e 3 (a) DyRep (b) DGNN

AUC Comparison with dependency
(b) With Temporal Dependency and without dependency 19

l Challenge 2: The temporal dependency nature
makes parallelism optimization hard to design

® Without Temporal Dependency : Ignore time, execute events in parallel
® With Temporal Dependency . keep time, execute events chronologically

» time

—— Without Temporal Dependency = ———— With Temporal Dependency
e 80 100
1 2
e """ | g0
2 It is necessary to maintain the temporal dependencies
e3 among events

- ST

S0-4+—7F—F——7—7—7 7 0 ——7——T——7T—T 1T
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80

(a) Without Temporal Dependency

Number of Epochs Number of Epochs
I I (a) DyRep (b) DGNN
e |lelle,

AUC Comparison with dependency
(b) With Temporal Dependency and without dependency 20

ISummary

® Challenge 1: The traditional batched training
mode fail to capture the real-time structural

evolution information

. ® Challenge 2: The temporal dependency
@ nature makes parallelism optimization hard
to design

1
1

Model
accuracy
decrease

Training
performance
decrease

2]

I Our Contributions

We propose NeutronStream, a high-performance Dynamic GNN framework

® Solution 1: Propose a new incremental Model
learning mode with a sliding window for » Challenge 1 J accuracy

training on graph sireams improve

parallel execution scheme performance

® Solution 2: P fine-grai t Traini
Solution ropose a fine-grained even » Challenge 2 raining
improve

22

ll Solution 1: Sliding-window-based Training Method

Incremental Mode with Sliding Window (denoted as NS-Slide)

We design a sliding window to select consecutive events from the input
event stream

Update event stream

————————————————

Dynamic social network graph

ll Solution 1: Sliding-window-based Training Method

Incremental Mode with Sliding Window (denoted as NS-Slide)

We design a sliding window to select consecutive events from the input
event stream

Update event stream
e.l|e,|esl|e,]|Es| €| -+

————————————————

Dynamic social network graph

ll Solution 1: Sliding-window-based Training Method

Incremental Mode with Sliding Window (denoted as NS-Slide)

We design a sliding window to select consecutive events from the input
event stream

Update event stream
e.lle,|eslle,]es||€g| "+

————————————————

o T/E %k

Dynamic social network graph

25

ll Solution 1: Sliding-window-based Training Method

Incremental Mode with Sliding Window (denoted as NS-Slide)

We design a sliding window to select consecutive events from the input
event stream

Update event stream
e.lle,|eslle,]es||€g| "+

————————————————

| & M

aa” | 2 e. |

Sl | ! ;/6 |
’\ e; @M

Dynamic social network graph

ll Solution 1: Sliding-window-based Training Method

Incremental Mode with Sliding Window (denoted as NS-Slide)
We design a sliding window to select consecutive events from the input

event stream

Update event stream
e.lle,|eslle,]es||€g| "+

————————————————

| & M

aa” | 2 e. |

Sl | ! ;/6 |
’\ e; @M

Dynamic social network graph

The window

size is fixed !

ll Solution 1: Sliding-window-based Training Method

The window size determines how much data can be fed into the model
Key Observations : A continuous segment of events is usually concentrated in

a local area in the graph

Update event stream
e.|le,|es]|€,]€s||Ec||E5] | 5] -+

N e, ™
ma ——
Yl

€; €, d.A

Dynamic social network graph

28

ll Solution 1: Sliding-window-based Training Method

The window size determines how much data can be fed into the model
Key Observations : A continuous segment of events is usually concentrated in

a local area in the graph

Update event stream
e,lle,||es|e,||es| || el -

//// N
- .

y \ e
/ v \

/
/ I
|

\\

\

VAl H
e —4
‘-\i \ ;14 S
\ ’%/(-1./’ el ! 8
\\\\n es 2 e7 ‘-.

7
e
-

Dynamic social network graph

29

ll Solution 1: Sliding-window-based Training Method

The window size determines how much data can be fed into the model
Key Observations : A continuous segment of events is usually concentrated in

a local area in the graph

Update event stream
e,lle,||esle,||es||e|le|esl -

CETETR
SRS e R =

g

Dynamic social network graph

30

ll Solution 1: Sliding-window-based Training Method

The window size determines how much data can be fed into the model
Key Observations : A continuous segment of events is usually concentrated in

a local area in the graph

Update event stream
e,lle,||esle,||es||e|le|esl -

—_——— — — — — — — - — —

| ™
el:lfl‘ ‘a2 mm The window size should be
’ 2 | ‘1?6 . dynamically adjustable

g

Dynamic social network graph

31

ll Solution 1: Sliding-window-based Training Method

Adaptive Adjustment of Window Size (denoted as NS-AdasSlide)

The window size can be adaptively adjusted for capturing the
complete spatial dependencies

Update event stream
e,||e,|es5]|€,]€s||Ec||€E5]|€ 5] -

ARARAARK

//—-_-\\
- ~
7 N
7 ﬁ N
/ AN
/ \ e

e, s,

// M \\). S

‘l- ;1? .
/‘ mn 2 o les

S e an

Dynamic social network graph

32

ll Solution 1: Sliding-window-based Training Method

Adaptive Adjustment of Window Size (denoted as NS-AdasSlide)

The window size can be adaptively adjusted for capturing the
complete spatial dependencies

Update event stream
e,|le,| es|e,l es| €l €elles -

——————————————

g

Dynamic social network graph

33

ISquﬁon 2: Dependency-Graph-Driven Event

Parallelizing

Key Observations : An event only involves a subgraph. If there are no read-
write conflicts between two events, they can be executed in parallel.

&

A subgraph consists of event nodes
and their neighbors, where
® Event nodes are write sets

® Event nodes and their neighbors are
read sets

34

ISquﬁon 2: Dependency-Graph-Driven Event
Parallelizing

Key Observations : An event only involves a subgraph. If there are no read-
write conflicts between two events, they can be executed in parallel.

‘el e,|le,lle, e. The purple area is the subgraph
of events €4

® Write set: {1, 2}
® Readset:{1,2, 3,4}

35

ISquﬁon 2: Dependency-Graph-Driven Event
Parallelizing

Key Observations : An event only involves a subgraph. If there are no read-
write conflicts between two events, they can be executed in parallel.

e, % e.lle,lles The green area is the subgraph
of events e,

® Write set. {5, 8}
® Read set: {5,8, 6,7}

36

ISquﬁon 2: Dependency-Graph-Driven Event
Parallelizing

Key Observations : An event only involves a subgraph. If there are no read-
write conflicts between two events, they can be executed in parallel.

‘el%e3 e, e
@ d

Read set: {5, 8, 6, 7} N Write set: {1,2} =0

4

€1and €7 can be executed in parallel

37

ISquﬁon 2: Dependency-Graph-Driven Event
Parallelizing

Key Observations : An event only involves a subgraph. If there are no read-
write conflicts between two events, they can be executed in parallel.

‘el 62%64 e.
e

Read set: {1, 2, 3,4} Write set: {1, 2} # ¢

4

€1and €3 cannot be executed in parallel

€3=>€1

38

ISquﬁon 2: Dependency-Graph-Driven Event
Parallelizing

Event Dependency Graph Gg = (V, &)
Each node represents an event. Each edge represents a dependency.

Event dependency graph

39

ISquﬁon 2: Dependency-Graph-Driven Event
Parallelizing

Event Dependency Graph Gg = (V, &)
Each node represents an event. Each edge represents a dependency.

» fime

e, e,
= e e, e

e Parallel plan

Event dependency graph

40

I NeutronStream

We deliver a dynamic GNN iraining framework NeutronStream , which
consists of 10,336 LoC

Dynamic GNNs

Event stream

v

v

| Python API C++ API

Event processing framework

Adaptive sliding
window engine

Event parallel
scheduling engine

Event parallel

Event execution engine

analysis engine

Thread pool

LibTorch
runtime

Dynamic graph storage & Multi-version embedding storage

NeutronStream architecture

Sliding-window-based Training
Method

Dependency-Graph-Driven
Event Parallelizing

4]

I NeutronStream
We provides a set of easy-to-use APIs

Class DyRep(nn.module):
def __init__ (self, h_dim):

= def UpdateGraph(evt, dynGraph):
Dynamic GNNs Event stream
‘ ‘ if evt.type == 'Association’
dynGraph.add_edge(evt.u,evt.v, undir=True)
‘ Python API C++ AP| \ » return dynGraph.get_subgraph(evt)
Event pl'OCESSil'g framework def Aggregate(dynSubgraph, dynEmb, nid):
... nbr = dynSubgraph.get_nbr(nid, dir=’in’)
nbr_emb = self.W_h(dynEmb.index(nbr))
. BT g_ni = torch.exp(self.S[nid, nbr])
Adaptive sliding Event parallel q_ni = q_ni/(torch.sum(q_ni) + 1le-7)
window engine Schedu"ng engine LibTorch agg = torch.max(nn.sigmoid(q_ni.view(1,1)*nbr_emb),dim=0)[0]
. return self.W_struct(agg)
runtime
i H def UpdateEmb(dynSubgraph, dynEmb, nid, h_agg, time):
Event par‘allel Event execution Engne delta_time = time - dynSubgraph.query_time(nid)
: 2 h_exogenous = self.W_t(delta_time)
anaIySIS engine Thread p00| h_self = self.W_rec(dynEmb.index(nid))
upd_emb = nn.sigmoid(h_agg + h_self + h_exogenous)
dynEmb.update(nid, upd_emb)
Dynamic graph storage & Multi-version embedding storage def forward(evt list, dynGraph, dynEmb):

for evt in evt_list:

: dynSubgraph = UpdateGraph(evt, dynGraph)
NeUtronStream arChltECture h_u_agg = Aggregate(dynSubgraph, dynEmb, evt.u)
h_v_agg = Aggregate(dynSubgraph, dynEmb, evt.v)
UpdateEmb(dynGraph, dynEmb, evt.u, h_v_agg, evt.time)
UpdateEmb(dynGraph, dynEmb, evt.v, h_u_agg, evt.time)

DyRep implementation with NeutronStream APIs 4,

I NeutronStream

We design a built-in graph storage structure that supporits efficient

dynamic vpdates

Dynamic GNNs Event stream

v v
Python API C++ AP

Event processing framework

Adaptive sliding Event parallel
window engine scheduling engine LibTorch
runtime
Event execution engine
Event parallel
analysis engine Thread pool

‘ Dynamic graph storage & Multi-version embedding storage \

NeutronStream architecture

Destination nodes

AEPERE U T I R N)

(a) In-out-edge-separated indexed adjacency lists

Nod : 0 1 2 3 N-2 N-1
ode version array O e N

<NodelD-Embedding> <NodelD-Embedding>

|
0 | [T 21 .
1 | 3 :
2 | 2 :
| . [N-1 |
| . Ll |
N-2 | [LN-2]
N-1 | N D [
Cmm e 1 |
79 : 72 2
I
Initialized embedding array Updated embeddings arrays

(b) Multi-version node embedding storage

Dynamic graph storage design 43

Jl Experimental Setups

Baseline: Torch-Batch, NS-Batch (NeutronStream), NS-Slide (NeutronStream) and
NS-Adaslide (NeutronStream).

Platformes:
An Aliyun ECS cluster (ecs.g5.é6xlarge instance, 24 vCPUs, 96GB RAM)
Models and datasets:

. Table 2: Dataset statistics
0 3 Dynamic GNN

DyRep, LDG, DGNN Dataset V] |E|.init |E|.final evt.num

0 6 real-world grOphS. Social Evolution [29] 84 575 794 54,369

. Github [4] 284 298 4,131 20,726
EFnvironment DNC [21] 2,029 0 5,598 39,264
UCI [21] 1,899 0 20,296 59,835

o Ubuntu 18.04 LTS Reality [7] 6,809 0 9,484 52,052

0 1531175 140,778

1 PyTorCh 1.12.1 Slashdot [12] 51,083

Jl AUC Comparison

Table 3: AUC comparison of three training methods

Training Method
bodel | "Datasel Torch-Batch | NS-Batch | NS-Slide | NS-AdaSlide
Social 83.01% 83.01% 86.15% 89.32%
DyRep Github 73.46 % 73.46% 77.54% 79.28%
DNC 63.15% 63.15% 63.49% 66.18%
|98 | 62.46% 62.46% 63.53% 65.68%
Social 87.07% 87.07% 88.52% 92.98%
LDG Github 74.34% 74.34% 78.10% 79.16%
DNC 64.62% 64.62% 66.50% 69.41%
UClI 62.16% 62.16% 64.38 % 66.57%
Social 97.21% 97.21% 97.61% 97.67%
DGNN Github 81.94% 81.94% 82.54% 84.45%
DNC 86.04% 86.04 % 87.72% 88.81%
UClI 78.45% 78.45% 81.14 % 82.09%

(1) The batch method (Torch-Batch and (2) The adaptive sliding method (NS-AdasSlide)
NS-Batch) has the lowest AUC because achieves the highest AUC by effectively
it cuts off the data stream, resulting in capturing the spatial-temporal locality
the loss of training information. between events.

ll Runtime Comparison

Torch-Batch NS-Batch [[J NS-Slide [NS-AdaSlide

5000

48173.61

Y,

V7222222222277

MMMD1JODNDIMN

. DO
V777222272

V,

DO

V

DA

12000

AANINNNIMIDIDIDNGDWNWNIY
AYOWIN 40 LNO

=

AYOWINW 40 LNO

ALLMHIMMMMMIMIMNY
XYOWANW 40 LNO

=

AMOWIW 40 LNO

Social

Github

Social

Reality Slashdot

UCI

DNC

Github

UcCI Reality Slashdot

DNC

Social

DNC UCI Reality Slashdot

Github

(c) DGNN

(b) LDG

(a) DyRep

Compared with the Torch-Batch, NS-Batch achieves 1.48x - 5.87x on 3

Dynamic GNNs and six real datasets.

46

ll Runtime Comparison

Torch-Batch NS-Batch [[J NS-Slide [NS-AdaSlide

48173.61

2

A)HL1MMNMINMDDIMNNN
Y,

. DN
V777222272

V,

DO
V7222222222277

V

DN

7

| 1 |
[(= S S [o
S [S (o] (=]
[el o o0 <
o [=)) o~ <t o
(8) aumnunt £OOQO|&O&
1 1 1 I
{
B AN
AYOWIIN 40 LNO
AYOWIN J0 LNO
| 1 | 1
S (=] S S S (=)
S S S - S
S S S S o
v o on (@ —
(s) swmuni yooda-194
I 1 I I
[
B ANAMMMHIMMMIOBOAN
AYOWIN 40 LNO
AYOWIN m%
1 1 1 1
S S S (] S
S S S S S
S S ~ S O
v <r on (@] —
(s) awmuni yooda-1a

Reality Slashdot

Github DNC UCI

Social

Github DNC UcCI Reality Slashdot

Social

DNC UCI Reality Slashdot
(a) DyRep

Github

Social

(c) DGNN

(b) LDG

Compared with the Torch-Batch, NS-AdaSlide have lowest parallelism.

However, thanks to our system optimization, NS-AdaSlide can achieve 1.27X-

4.44X speedups on 3 Dynamic GNNs and six real datasets.

47

ll Summary

NeutronStream: A Dynamic GNN Training Framework with Sliding Window for
Graph Streams.

o Proposing a new incremental learning mode with a sliding window for
training on graph sireams

We design a sliding-window-based method to incrementally train models for capturing the spatial-
temporal dependency of events.

48

ll Summary

NeutronStream: A Dynamic GNN Training Framework with Sliding Window for
Graph Streams.

o Proposing a new incremental learning mode with a sliding window for
training on graph sireams

We design a sliding-window-based method to incrementally train models for capturing the spatial-
temporal dependency of events.

o Proposing a fine-grained event parallel execution scheme
We build a dependency graph analysis method that identifies the events
having no node-updating conflicts and processes them in parallel.

49

ll Summary

NeutronStream: A Dynamic GNN Training Framework with Sliding Window for
Graph Streams.

0 Proposing a new incremental learning mode with a sliding window for
training on graph sireams

We design a sliding-window-based method to incrementally train models for capturing the spatial-
temporal dependency of events.

o Proposing a fine-grained event parallel execution scheme
We build a dependency graph analysis method that identifies the events
having no node-updating conflicts and processes them in parallel.

0 Delivering a dynamic GNN system

We design and implement NeutronStream, a dynamic GNN system that achieves
1.48X-5.87X speedups over PyTorch.

50

ll Summary

NeutronStream: A Dynamic GNN Training Framework with Sliding Window for
Graph Streams.

[

Proposing a new incremental learning mode with a sliding window for
training on graph sireams

We design a sliding-window-based method to incrementally train models for capturing the spatial-
temporal dependency of events.

Proposing a fine-grained event parallel execution scheme
We build a dependency graph analysis method that identifies the events
having no node-updating conflicts and processes them in parallel.

Delivering a dynamic GNN system
We design and implement NeutronStream, a dynamic GNN system that achieves

1.48X-5.87X speedups over PyTorch.
The codes are publicly available on github

https://github.com/iDC-NEU/NeutronStream

51

