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ll Execution Pattern of Dynamic GNN
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ll Execution Pattern of Dynamic GNN
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ll Execution Pattern of Dynamic GNN
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ll Execution Pattern of Dynamic GNN
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I Characteristic: Spatial-Temporal Dependency

® Spatial Dependency: a node status depends on its neighbors

® Temporal Dependency: a node status depends on its previous status

Temporal Dependency

Spatial
Dependency
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I Characteristic: Spatial-Temporal Dependency

® Spatial Dependency: a node status depends on its neighbors

® Temporal Dependency: a node status depends on its previous status

Temporal Dependency

The complex spatial-temporal dependencies among events

pose new challenges for designing dynamic GNN frameworks.
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l Challenge 1: The fraining method needs to capture
real-time siructural information

Key Observations : Events in the same area should update parameters
collaboratively to better capture spatial dependencies

Update event stream
e,||e,|es]|e,||Es||€| ==+

 —_—_———————— — — — — —

Dynamic social network graph

=
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l Challenge 1: The fraining method needs to capture
real-time siructural information
The traditional batched training method forcibly cuts off the event stream
and ignores the spatial locality between events
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l Challenge 1: The fraining method needs to capture
real-time siructural information

The traditional batched training method forcibly cuts off the event stream
and ignores the spatial locality between events
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l Challenge 2: The temporal dependency nature
makes parallelism optimization hard to design

® Temporal Dependency: a node status depends on its previous status
Existing frameworks sequential iterative processing

Update event stream

————————————————

Dynamic social network graph
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l Challenge 2: The temporal dependency nature
makes parallelism optimization hard to design

® Temporal Dependency: a node status depends on its previous status
Existing frameworks sequential iterative processing

Update event stream
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20 threads for an epoch : 60.89s
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l Challenge 2: The temporal dependency nature
makes parallelism optimization hard to design
® Without Temporal Dependency : Ignore time, execute events in parallel

® With Temporal Dependency . Keep time, execute events chronologically

€
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» time
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( b ) With Temporal Dependency
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l Challenge 2: The temporal dependency nature
makes parallelism optimization hard to design

® Without Temporal Dependency : Ignore time, execute events in parallel
® With Temporal Dependency . Keep time, execute events chronologically
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l Challenge 2: The temporal dependency nature
makes parallelism optimization hard to design

® Without Temporal Dependency : Ignore time, execute events in parallel
® With Temporal Dependency . keep time, execute events chronologically
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ISummary

® Challenge 1: The traditional batched training
mode fail to capture the real-time structural

evolution information

. ® Challenge 2: The temporal dependency
@ nature makes parallelism optimization hard
to design

1
1

Model
accuracy
decrease

Training
performance
decrease
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I Our Contributions

We propose NeutronStream, a high-performance Dynamic GNN framework

® Solution 1: Propose a new incremental Model
learning mode with a sliding window for » Challenge 1 J accuracy

training on graph sireams improve

parallel execution scheme performance

® Solution 2: P fine-grai t Traini
Solution ropose a fine-grained even » Challenge 2 raining
improve
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ll Solution 1: Sliding-window-based Training Method

Incremental Mode with Sliding Window (denoted as NS-Slide)

We design a sliding window to select consecutive events from the input
event stream

Update event stream

————————————————

Dynamic social network graph
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We design a sliding window to select consecutive events from the input
event stream
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ll Solution 1: Sliding-window-based Training Method

Incremental Mode with Sliding Window (denoted as NS-Slide)

We design a sliding window to select consecutive events from the input
event stream
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ll Solution 1: Sliding-window-based Training Method

Incremental Mode with Sliding Window (denoted as NS-Slide)
We design a sliding window to select consecutive events from the input

event stream

Update event stream
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ll Solution 1: Sliding-window-based Training Method

The window size determines how much data can be fed into the model
Key Observations : A continuous segment of events is usually concentrated in

a local area in the graph

Update event stream
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ll Solution 1: Sliding-window-based Training Method

The window size determines how much data can be fed into the model
Key Observations : A continuous segment of events is usually concentrated in

a local area in the graph
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ll Solution 1: Sliding-window-based Training Method

The window size determines how much data can be fed into the model
Key Observations : A continuous segment of events is usually concentrated in

a local area in the graph

Update event stream
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ll Solution 1: Sliding-window-based Training Method

The window size determines how much data can be fed into the model
Key Observations : A continuous segment of events is usually concentrated in

a local area in the graph

Update event stream
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ll Solution 1: Sliding-window-based Training Method

Adaptive Adjustment of Window Size (denoted as NS-AdasSlide)

The window size can be adaptively adjusted for capturing the
complete spatial dependencies

Update event stream
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ll Solution 1: Sliding-window-based Training Method

Adaptive Adjustment of Window Size (denoted as NS-AdasSlide)

The window size can be adaptively adjusted for capturing the
complete spatial dependencies

Update event stream
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ISquﬁon 2: Dependency-Graph-Driven Event

Parallelizing

Key Observations : An event only involves a subgraph. If there are no read-
write conflicts between two events, they can be executed in parallel.

&

A subgraph consists of event nodes
and their neighbors, where
® Event nodes are write sets

® Event nodes and their neighbors are
read sets
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ISquﬁon 2: Dependency-Graph-Driven Event
Parallelizing

Key Observations : An event only involves a subgraph. If there are no read-
write conflicts between two events, they can be executed in parallel.

‘el e,|le,lle, e. The purple area is the subgraph
of events €4

® Write set: {1, 2}
® Readset:{1,2, 3,4}
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ISquﬁon 2: Dependency-Graph-Driven Event
Parallelizing

Key Observations : An event only involves a subgraph. If there are no read-
write conflicts between two events, they can be executed in parallel.

e, % e.lle,lles The green area is the subgraph
of events e,

® Write set. {5, 8}
® Read set: {5,8, 6,7}
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ISquﬁon 2: Dependency-Graph-Driven Event
Parallelizing

Key Observations : An event only involves a subgraph. If there are no read-
write conflicts between two events, they can be executed in parallel.

‘el%e3 e, e
@ d

Read set: {5, 8, 6, 7} N Write set: {1,2} =0

4

€1and €7 can be executed in parallel
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ISquﬁon 2: Dependency-Graph-Driven Event
Parallelizing

Key Observations : An event only involves a subgraph. If there are no read-
write conflicts between two events, they can be executed in parallel.

‘el 62%64 e.
e

Read set: {1, 2, 3,4} Write set: {1, 2} # ¢

4

€1and €3 cannot be executed in parallel

€3=>€1
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ISquﬁon 2: Dependency-Graph-Driven Event
Parallelizing

Event Dependency Graph Gg = (V, &)
Each node represents an event. Each edge represents a dependency.

Event dependency graph

39



ISquﬁon 2: Dependency-Graph-Driven Event
Parallelizing

Event Dependency Graph Gg = (V, &)
Each node represents an event. Each edge represents a dependency.

» fime

e, e,
= e e, e

e Parallel plan

Event dependency graph
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I NeutronStream

We deliver a dynamic GNN iraining framework NeutronStream , which
consists of 10,336 LoC

Dynamic GNNs

Event stream

v

v

| Python API C++ API

Event processing framework

Adaptive sliding
window engine

Event parallel
scheduling engine

Event parallel

Event execution engine

analysis engine

Thread pool

LibTorch
runtime

Dynamic graph storage & Multi-version embedding storage

NeutronStream architecture

Sliding-window-based Training
Method

Dependency-Graph-Driven
Event Parallelizing

4]



I NeutronStream
We provides a set of easy-to-use APIs

Class DyRep(nn.module):
def __init__ (self, h_dim):

= def UpdateGraph(evt, dynGraph):
Dynamic GNNs Event stream
‘ ‘ if evt.type == 'Association’
dynGraph.add_edge(evt.u,evt.v, undir=True)
‘ Python API C++ AP| \ » return dynGraph.get_subgraph(evt)
Event pl'OCESSil'g framework def Aggregate(dynSubgraph, dynEmb, nid):
............................................................................................. nbr = dynSubgraph.get_nbr(nid, dir=’in’)
nbr_emb = self.W_h(dynEmb.index(nbr))
. BT g_ni = torch.exp(self.S[nid, nbr])
Adaptive sliding Event parallel q_ni = q_ni/(torch.sum(q_ni) + 1le-7)
window engine Schedu"ng engine LibTorch agg = torch.max(nn.sigmoid(q_ni.view(1,1)*nbr_emb),dim=0)[0]
. return self.W_struct(agg)
runtime
i H def UpdateEmb(dynSubgraph, dynEmb, nid, h_agg, time):
Event par‘allel Event execution Engne delta_time = time - dynSubgraph.query_time(nid)
: 2 h_exogenous = self.W_t(delta_time)
anaIySIS engine Thread p00| h_self = self.W_rec(dynEmb.index(nid))
upd_emb = nn.sigmoid(h_agg + h_self + h_exogenous)
dynEmb.update(nid, upd_emb)
Dynamic graph storage & Multi-version embedding storage def forward(evt list, dynGraph, dynEmb):

for evt in evt_list:

: dynSubgraph = UpdateGraph(evt, dynGraph)
NeUtronStream arChltECture h_u_agg = Aggregate(dynSubgraph, dynEmb, evt.u)
h_v_agg = Aggregate(dynSubgraph, dynEmb, evt.v)
UpdateEmb(dynGraph, dynEmb, evt.u, h_v_agg, evt.time)
UpdateEmb(dynGraph, dynEmb, evt.v, h_u_agg, evt.time)

DyRep implementation with NeutronStream APIs 4,



I NeutronStream

We design a built-in graph storage structure that supporits efficient

dynamic vpdates

Dynamic GNNs Event stream

v v
Python API C++ AP

Event processing framework

Adaptive sliding Event parallel
window engine scheduling engine LibTorch
runtime
Event execution engine
Event parallel
analysis engine Thread pool

‘ Dynamic graph storage & Multi-version embedding storage \

NeutronStream architecture

Destination nodes

AEPERE U T I R N )

(a) In-out-edge-separated indexed adjacency lists

Nod : 0 1 2 3 N-2 N-1
ode version array O e N

<NodelD-Embedding> <NodelD-Embedding>

|
0 | [T 21 .
1 | 3 :
2 | 2 :
| . [N-1 |
| . Ll |
N-2 | [LN-2 ]
N-1 | N D [
Cmm e 1 |
79 : 72 2
I
Initialized embedding array Updated embeddings arrays

(b) Multi-version node embedding storage

Dynamic graph storage design 43



Jl Experimental Setups

Baseline: Torch-Batch, NS-Batch (NeutronStream), NS-Slide (NeutronStream) and
NS-Adaslide (NeutronStream).

Platformes:
An Aliyun ECS cluster (ecs.g5.é6xlarge instance, 24 vCPUs, 96GB RAM)
Models and datasets:

. Table 2: Dataset statistics
0 3 Dynamic GNN

DyRep, LDG, DGNN Dataset V] |E|.init |E|.final evt.num

0 6 real-world grOphS. Social Evolution [29] 84 575 794 54,369

. Github [4] 284 298 4,131 20,726
EFnvironment DNC [21] 2,029 0 5,598 39,264
UCI [21] 1,899 0 20,296 59,835

o Ubuntu 18.04 LTS Reality [7] 6,809 0 9,484 52,052

0 1531175 140,778

1 PyTorCh 1.12.1 Slashdot [12] 51,083



Jl AUC Comparison

Table 3: AUC comparison of three training methods

Training Method
bodel | "Datasel Torch-Batch | NS-Batch | NS-Slide | NS-AdaSlide
Social 83.01% 83.01% 86.15% 89.32%
DyRep Github 73.46 % 73.46% 77.54% 79.28%
DNC 63.15% 63.15% 63.49% 66.18%
|98 | 62.46% 62.46% 63.53% 65.68%
Social 87.07% 87.07% 88.52% 92.98%
LDG Github 74.34% 74.34% 78.10% 79.16%
DNC 64.62% 64.62% 66.50% 69.41%
UClI 62.16% 62.16% 64.38 % 66.57%
Social 97.21% 97.21% 97.61% 97.67%
DGNN Github 81.94% 81.94% 82.54% 84.45%
DNC 86.04% 86.04 % 87.72% 88.81%
UClI 78.45% 78.45% 81.14 % 82.09%

(1) The batch method (Torch-Batch and (2) The adaptive sliding method (NS-AdasSlide)
NS-Batch) has the lowest AUC because achieves the highest AUC by effectively
it cuts off the data stream, resulting in capturing the spatial-temporal locality
the loss of training information. between events.



ll Runtime Comparison

Torch-Batch NS-Batch [[J NS-Slide [ NS-AdaSlide
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Compared with the Torch-Batch, NS-Batch achieves 1.48x - 5.87x on 3

Dynamic GNNs and six real datasets.
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ll Runtime Comparison

Torch-Batch NS-Batch [[J NS-Slide [ NS-AdaSlide
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Compared with the Torch-Batch, NS-AdaSlide have lowest parallelism.

However, thanks to our system optimization, NS-AdaSlide can achieve 1.27X-

4.44X speedups on 3 Dynamic GNNs and six real datasets.
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ll Summary

NeutronStream: A Dynamic GNN Training Framework with Sliding Window for
Graph Streams.

o Proposing a new incremental learning mode with a sliding window for
training on graph sireams

We design a sliding-window-based method to incrementally train models for capturing the spatial-
temporal dependency of events.
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ll Summary

NeutronStream: A Dynamic GNN Training Framework with Sliding Window for
Graph Streams.

o Proposing a new incremental learning mode with a sliding window for
training on graph sireams

We design a sliding-window-based method to incrementally train models for capturing the spatial-
temporal dependency of events.

o Proposing a fine-grained event parallel execution scheme
We build a dependency graph analysis method that identifies the events
having no node-updating conflicts and processes them in parallel.
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ll Summary

NeutronStream: A Dynamic GNN Training Framework with Sliding Window for
Graph Streams.

0 Proposing a new incremental learning mode with a sliding window for
training on graph sireams

We design a sliding-window-based method to incrementally train models for capturing the spatial-
temporal dependency of events.

o Proposing a fine-grained event parallel execution scheme
We build a dependency graph analysis method that identifies the events
having no node-updating conflicts and processes them in parallel.

0 Delivering a dynamic GNN system

We design and implement NeutronStream, a dynamic GNN system that achieves
1.48X-5.87X speedups over PyTorch.
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ll Summary

NeutronStream: A Dynamic GNN Training Framework with Sliding Window for
Graph Streams.

[

Proposing a new incremental learning mode with a sliding window for
training on graph sireams

We design a sliding-window-based method to incrementally train models for capturing the spatial-
temporal dependency of events.

Proposing a fine-grained event parallel execution scheme
We build a dependency graph analysis method that identifies the events
having no node-updating conflicts and processes them in parallel.

Delivering a dynamic GNN system
We design and implement NeutronStream, a dynamic GNN system that achieves

1.48X-5.87X speedups over PyTorch.
The codes are publicly available on github

https://github.com/iDC-NEU/NeutronStream
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