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We can discover valuable information from these graphs with graph analytics 
algorithms, such as PageRank, SSSP, and Connected Components.
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In fact, the graphs in our real life are very large. 
It is difficult for us to analysis them. 
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For this, some parallel or distributed graph processing systems have 
been proposed to help us to analyze these large graphs.

Graph Computation



Prege: a system for large-scale graph processing. [Malewicz G, et. al. 2010]

PowerGraph: Distributed graph-parallel computation on natural graphs [Joseph E G, et. al. 
2012]

From "Think Like a Vertex" to "Think Like a Graph [Yuanyuan T, et. al. 2013]

Maiter: An asynchronous graph processing framework for delta-based accumulative iterative 
computation [Yanfeng Z, et. al. 2013]

Gemini: A computation-centric distributed graph processing system. [Xiaowei Z, et. al. 2016]

Grape: Parallelizing Sequential Graph Computations. [Wenfei F, et. al. 2017]

…
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They assume graphs are static

Prege: a system for large-scale graph processing. [Malewicz G, et. al. 2010]

PowerGraph: Distributed graph-parallel computation on natural graphs [Joseph E G, et. al. 
2012]

From "Think Like a Vertex" to "Think Like a Graph [Yuanyuan T, et. al. 2013]

Maiter: An asynchronous graph processing framework for delta-based accumulative iterative 
computation [Yanfeng Z, et. al. 2013]

Gemini: A computation-centric distributed graph processing system. [Xiaowei Z, et. al. 2016]

Grape: Parallelizing Sequential Graph Computations. [Wenfei F, et. al. 2017]
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In our real life, graphs are evolving all the time
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In our real life, graphs are evolving all the time
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1. Only focus on a specific class of algorithms
2. Require no-trivial incremental computation logical

1. Graphbolt: Dependency-drivensynchronous processing of streaming graphs. [Mugilan
M., et. al. 2018]

2. Kickstarter: Fast and accurate computations on streaming graphs via trimmed 
approximations. [Keval V., et. al, ASPLOS 2017. 

3. Graphin: An online high performance incremental graph processing framework. 
[Dipanjan S., et. al. 2016]. 

4. Tornado: A system for real-time iterative analysis over evolving data. [Xiaogang S., et. al. 
2016]
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1. Graphbolt: Dependency-drivensynchronous processing of streaming graphs. [Mugilan
M., et. al. 2018]

2. Kickstarter: Fast and accurate computations on streaming graphs via trimmed 
approximations. [Keval V., et. al, ASPLOS 2017. 

3. Graphin: An online high performance incremental graph processing framework. 
[Dipanjan S., et. al. 2016]. 
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1. Only focus on a specific class of algorithms
2. Require no-trivial incremental computation logical

require no-trivial incremental computation logical

require no-trivial incremental computation logical

only for monotonous and single dependency algorithms

only for algorithms that converge to same fix-point from different initial states

Incremental Graph Processing Systems
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1. Ingress is able to incrementalize batch vertex-centric algorithms without users’ 
intervention.

2. Ingress supports all kinds of vertex-centric computations with optimize memory 
utilization.
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Message-driven: the state of each vertex  is decided by the received messages from its neighbors.

The state of C is decided by the messages received 
from A and B.

Reduce the problem of finding the differences among two runs of a batch 
vertex-centric algorithm to identifying the changes to messages.

The state of C is decided by the messages received 
from B.

Message-driven Differentiation



Message-driven: the state of each vertex  is decided by the received messages from its neighbors.

A sends C a message (invalid message)，
C do not send A a message (missing message)

A sends C a cancellation message,
C sends A a compensation message

Message-driven Differentiation
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Free Memoization：

Vertex Memoization：

Path Memoization：

Edge Memoization： None
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Experimental Study

• Competitors
Tornado[X. Shi], GraphBolt [M. Mariappan]
KickStarter [K. Vora], IngressR

• Environment
AliCloud 1 ecs.r6.13xlarge (52vCPU, 384G Memory)

32 ecs.r6.6xlarge (24vCPU, 192G Memory)

• Datasets



PageRank SSSP GCN-Forward

Response Time

Ingress outperforms state-of-the-art incremental graph systems by 15.93× on average.



Space Cost

PageRank SSSP GCN-Forward

Compared to GraphBolt and KickStarter, Ingress always uses less memory.



Sensitivity to Updates

PageRank SSSP

Almost all the incremental graph processing systems take longer 
to process larger graph updates.
Ingress show an better performance than Tornado and graphbolt, 
and comparable performance with KickStarter. 



Sensitivity to Graph Size

PageRank SSSP

Compared with IngressR, the response time of incremental 
systems Ingress, GraphBolt and KickStarter are less sensitive to 
the increase of |G|.



Conclusion

➢ Design a vertex-centric incremental graph processing framework.

➢ Design four memorization policy and identify their sufficient conditions. 

➢ Implement an incremental graph processing system, Ingress.




