
Automating Incremental Graph Processing
with Flexible Memoization

Shufeng Gong, Chao Tian, Qiang Yin, Wenyuan Yu, Yanfeng
Zhang, Liang Geng, Song Yu, Ge Yu, Jingren Zhou

Northeastern University
Alibaba Group

a.html

b.html

c.html

d.html
e.html

Web Graph

Northeastern University,

China

Road Graph

Social Graph

Graph Computation

We can discover valuable information from these graphs with graph analytics
algorithms, such as PageRank, SSSP, and Connected Components.

a.html

b.html

c.html

d.html
e.html

Web Graph

Northeastern University,

China

Road Graph

Social Graph

Graph Computation

In fact, the graphs in our real life are very large.
It is difficult for us to analysis them.

Web Graph

Road Graph

Social Graph

Graph Computation

Web Graph

Road Graph

Social Graph

For this, some parallel or distributed graph processing systems have
been proposed to help us to analyze these large graphs.

Graph Computation

Prege: a system for large-scale graph processing. [Malewicz G, et. al. 2010]

PowerGraph: Distributed graph-parallel computation on natural graphs [Joseph E G, et. al.
2012]

From "Think Like a Vertex" to "Think Like a Graph [Yuanyuan T, et. al. 2013]

Maiter: An asynchronous graph processing framework for delta-based accumulative iterative
computation [Yanfeng Z, et. al. 2013]

Gemini: A computation-centric distributed graph processing system. [Xiaowei Z, et. al. 2016]

Grape: Parallelizing Sequential Graph Computations. [Wenfei F, et. al. 2017]

…

…

Graph Processing Systems

They assume graphs are static

Prege: a system for large-scale graph processing. [Malewicz G, et. al. 2010]

PowerGraph: Distributed graph-parallel computation on natural graphs [Joseph E G, et. al.
2012]

From "Think Like a Vertex" to "Think Like a Graph [Yuanyuan T, et. al. 2013]

Maiter: An asynchronous graph processing framework for delta-based accumulative iterative
computation [Yanfeng Z, et. al. 2013]

Gemini: A computation-centric distributed graph processing system. [Xiaowei Z, et. al. 2016]

Grape: Parallelizing Sequential Graph Computations. [Wenfei F, et. al. 2017]

…

…

Graph Processing Systems

In our real life, graphs are evolving all the time

Web Graph

Road Graph

Social Graph

web page
additional/deletion

Evolving Graphs

In our real life, graphs are evolving all the time

Web Graph

Road Graph

Social Graph

road
obstruction/opening

Evolving Graphs

In our real life, graphs are evolving all the time

Web Graph

Road Graph

Social Graph

netizens
follow/unfollow

Evolving Graphs

Original
Graph G

Analysis Results
on G∪∆G

Batch-based
Processing System

Graph
Changes ∆G

Recomputation

Redundant computation

Incremental Graph Processing

Graph
Changes ∆G

Incremental
Processing System

Analysis Results
on G∪∆G

Analysis Results
on G

Original
Graph G

Analysis Results
on G∪∆G

Batch-based
Processing System

Graph
Changes ∆G

Recomputation

Incremental Graph Processing

1. Only focus on a specific class of algorithms
2. Require no-trivial incremental computation logical

1. Graphbolt: Dependency-drivensynchronous processing of streaming graphs. [Mugilan
M., et. al. 2018]

2. Kickstarter: Fast and accurate computations on streaming graphs via trimmed
approximations. [Keval V., et. al, ASPLOS 2017.

3. Graphin: An online high performance incremental graph processing framework.
[Dipanjan S., et. al. 2016].

4. Tornado: A system for real-time iterative analysis over evolving data. [Xiaogang S., et. al.
2016]

…

…

Incremental Graph Processing Systems

1. Graphbolt: Dependency-drivensynchronous processing of streaming graphs. [Mugilan
M., et. al. 2018]

2. Kickstarter: Fast and accurate computations on streaming graphs via trimmed
approximations. [Keval V., et. al, ASPLOS 2017.

3. Graphin: An online high performance incremental graph processing framework.
[Dipanjan S., et. al. 2016].

4. Tornado: A system for real-time iterative analysis over evolving data. [Xiaogang S., et. al.
2016]

…

…
1. Only focus on a specific class of algorithms
2. Require no-trivial incremental computation logical

require no-trivial incremental computation logical

require no-trivial incremental computation logical

only for monotonous and single dependency algorithms

only for algorithms that converge to same fix-point from different initial states

Incremental Graph Processing Systems

G raphS A G E

A utom atic
V erification

Ingress

D istributed R untim e
E ngine

V ertex-C entric
G raph P rogram s

G C N

S S S P W C C

P ageR ank S im R ank

G IN

C om m N et

P H P

LC A

G raph updates
U pdated
result

Flexible M em oization

U pdated
interm ediate

states

M em oization-Free E ngine

M em oization-E dge E ngine

M em oization-P ath E ngine

M em oization-V ertex E ngine

Ingress

1. Ingress is able to incrementalize batch vertex-centric algorithms without users’
intervention.

2. Ingress supports all kinds of vertex-centric computations with optimize memory
utilization.

G raphS A G E

A utom atic
V erification

Ingress

D istributed R untim e
E ngine

V ertex-C entric
G raph P rogram s

G C N

S S S P W C C

P ageR ank S im R ank

G IN

C om m N et

P H P

LC A

G raph updates
U pdated
result

Flexible M em oization

U pdated
interm ediate

states

M em oization-Free E ngine

M em oization-E dge E ngine

M em oization-P ath E ngine

M em oization-V ertex E ngine

Ingress

Message-driven: the state of each vertex is decided by the received messages from its neighbors.

The state of C is decided by the messages received
from A and B.

Reduce the problem of finding the differences among two runs of a batch
vertex-centric algorithm to identifying the changes to messages.

The state of C is decided by the messages received
from B.

Message-driven Differentiation

Message-driven: the state of each vertex is decided by the received messages from its neighbors.

A sends C a message (invalid message)，
C do not send A a message (missing message)

A sends C a cancellation message,
C sends A a compensation message

Message-driven Differentiation

Message-driven: the state of each vertex is decided by the received messages from its neighbors.

A sends C a message (invalid message)，
C do not send A a message (missing message)

A sends C a cancellation message,
C sends A a compensation message

Message-driven Differentiation

vertex state

message1 message2

Delta-PageRank
Delta-PHP

Memoization-Free

Flexible Memoization

Memoization-Path

SSSP，CC，SSWP

effective message

vertex state

message1 message2

Delta-PageRank
Delta-PHP

Memoization-Free

Flexible Memoization

Memoization-Vertex

GCN，CommNet

Ag0 Bg0 Cg0 Dg0

Ag1 Bg1 Cg1 Dg1

Ag2 Bg2 Cg2 Dg2

two
messages

Memoization-Path

SSSP，CC，SSWP

effective message

vertex state

message1 message2

Delta-PageRank
Delta-PHP

Memoization-Free

Flexible Memoization

Memoization-Edge

messages

GCN，CommNet GraphSAGE，GIN

Ag0 Bg0 Cg0 Dg0

Ag1 Bg1 Cg1 Dg1

Ag2 Bg2 Cg2 Dg2

two
messages

A0 B0 C0 D0

A1 B1 C1 D1

A2 B2 C2 D2

Memoization-Vertex

Memoization-Path

SSSP，CC，SSWP

effective message

vertex state

message1 message2

Delta-PageRank
Delta-PHP

Memoization-Free

Flexible Memoization

Vertex Memoization Edge Memoization

messages

GCN，CommNet GraphSAGE，GIN

Ag0 Bg0 Cg0 Dg0

Ag1 Bg1 Cg1 Dg1

Ag2 Bg2 Cg2 Dg2

two
messages

A0 B0 C0 D0

A1 B1 C1 D1

A2 B2 C2 D2

Memoization-Path

SSSP，CC，SSWP

effective message

vertex state

message1 message2

Delta-PageRank
Delta-PHP

Memoization-Free

Flexible Memoization

Which is optimal
selection？

The aggregation of
received messages

the set of received
messages

aggregation
function

vertex state

update function

Edge property
Message

generation
function

message
from v to w

Free Memoization：

Vertex Memoization：

Path Memoization：

Edge Memoization： None

Free Memoization：

Vertex Memoization：

Path Memoization：

Edge Memoization： None

Automating Incremental Graph Processing with Flexible Memoization.
Shufeng Gong, Chao Tian, Qiang Yin, et. al.

Experimental Study

• Competitors
Tornado[X. Shi], GraphBolt [M. Mariappan]
KickStarter [K. Vora], IngressR

• Environment
AliCloud 1 ecs.r6.13xlarge (52vCPU, 384G Memory)

32 ecs.r6.6xlarge (24vCPU, 192G Memory)

• Datasets

PageRank SSSP GCN-Forward

Response Time

Ingress outperforms state-of-the-art incremental graph systems by 15.93× on average.

Space Cost

PageRank SSSP GCN-Forward

Compared to GraphBolt and KickStarter, Ingress always uses less memory.

Sensitivity to Updates

PageRank SSSP

Almost all the incremental graph processing systems take longer
to process larger graph updates.
Ingress show an better performance than Tornado and graphbolt,
and comparable performance with KickStarter.

Sensitivity to Graph Size

PageRank SSSP

Compared with IngressR, the response time of incremental
systems Ingress, GraphBolt and KickStarter are less sensitive to
the increase of |G|.

Conclusion

➢ Design a vertex-centric incremental graph processing framework.

➢ Design four memorization policy and identify their sufficient conditions.

➢ Implement an incremental graph processing system, Ingress.

