
HBP: Hotness Balanced Partition for Prioritized
Iterative Graph Computations

Shufeng Gong, Yanfeng Zhang, and Ge Yu

Northeastern University, China

Distributed Graph Computation

Graph

Partition

Distributed Graph Computation

worker1

worker2

Distributed

Computation

Graph

Partition

Graph Partition

① ③

Different graph partition schemes may result

in different graph processing performance.

②

Graph Partition

each partition has the

same number of vertices

(four vertices)

① ③

②

Graph Partition

each partition has the

same number of vertices

(four vertices)

① ③

Workload Balance

②

Graph Partition

each partition has the

same number of vertices

(four vertices)

one pair of vertices

communicate between

different partitions

① ③

Workload Balance

②

Graph Partition

each partition has the

same number of vertices

(four vertices)

one pair of vertices

communicate between

different partitions

① ③

Workload Balance
Less Communication

②

Graph Partition

①

②

③

each partition has the

same number of vertices

(four vertices)

three pairs of vertices

communicate between

different partitions

More Communication
Workload Balance

Graph Partition

① ③

one pair of vertices

communicate between

different partitions

Workload Imbalance
Less Communication

each partition has a different

number of vertices (two

vertices vs. six vertices)

②

wait time

Graph Partition

① ③

1. Reduce wait time

2. Minimize communication cost

②

A good partition can

Graph Partition

① ③

1. Balance the number of vertices

2. Minimize the number of edge cuts
Goals:

②

Related Works

Metis1, Leopard2, Fennel3, HDRF4,Spinner5, Sheep6, NE7

1. Karypis, George, and Vipin Kumar. "A fast and high quality multilevel scheme for partitioning irregular graphs." SISC 20.1
(1998): 359-392.

2. Huang, Jiewen, and Daniel J. Abadi. "Leopard: Lightweight edge-oriented partitioning and replication for dynamic
graphs." Proceedings of the VLDB 2016.

3. Tsourakakis, Charalampos, et al. "Fennel: Streaming graph partitioning for massive scale graphs.“ WSDM 2014.
4. Petroni, Fabio, et al. "HDRF: Stream-based partitioning for power-law graphs." CIKM 2015.
5. Martella, Claudio, et al. "Spinner: Scalable graph partitioning in the cloud." ICDE 2017.
6. Margo, Daniel, and Margo Seltzer. "A scalable distributed graph partitioner." VLDB 2015.
7. Zhang, Chenzi, et al. "Graph edge partitioning via neighborhood heuristic." KDD 2017.

They assume the workload depends on vertices (vertex centric) or

edges (edge centric), and the communication cost depends on the

number of edge cuts or vertex replications.

... ...

A

B

C

D

E

F

G

A

B

C

D

E

F

G

Synchronous Frameworks

Global BarriersSuper Step

Prior graph partition

methods are designed based

on synchronous framework.

Sync & Async

Some work pays attention to

asynchronous frameworks since

they can accelerate a class of

iterative algorithms.

... ...

A

B

C

D

E

F

G

A

B

C

D

E

F

G

... ...

A

B

C

D

E

F

G

A

B

C

D

E

F

G

Sync & Async

Global BarriersSuper Step
Vertices can be processed

at any time

No global

barrier

... ...

A

B

C

D

E

F

G

A

B

C

D

E

F

G

In each super step, each vertex

is only processed once, and each

edge only delivers one message.

The number of updates on each vertex

and the number of messages passed

through each edge are not consistent.

Sync & Async

Hotness of Vertices

a
g h

m

b
f

i n

c

e

k

l
j

d

Hotness of Vertices

6
a

5
g

6
h 5

m

2
b

3
f

2
i

3
n

3
c

3
e

3
k

2
l3

j

2
d

Hotness of Vertices

6
a

5
g

6
h 5

m

2
b

3
f

2
i

3
n

3
c

3
e

3
k

2
l3

j

2
d

The number of

vertices does not

indicate the workload

Vertex Balanced Partition

vertex balance

G1

G2

6
a

5
g

6
h 5

m

2
b

3
f

2
i

3
n

3
c

3
e

3
k

2
l3

j

2
d

worker1

worker2

Partition graph into G1 and G2

Worker1 processes G1

Worker2 processes G2

Vertex Balanced Partition

vertex balance

G1

G2

6
a

5
g

6
h 5

m

2
b

3
f

2
i

3
n

3
c

3
e

3
k

2
l3

j

2
d

worker1

worker2

Prior vertex balanced graph

partition methods do not

take the vertex hotness

into account when

partitioning graphs.

The number of vertices in G1 and G2 is equal.

The sum of hotness in G1 and G2 is not equal.

Vertex Balanced Partition

vertex balance

Two workers are running.

There may be a lot of

invalid computation in

woker2 since vertices in

G2 need fewer iterations.

G1

G2

6
a

5
g

6
h 5

m

2
b

3
f

2
i

3
n

3
c

3
e

3
k

2
l3

j

2
d

worker1

worker2

Vertex Balanced Partition

vertex balance

Two workers are running.

There may be a lot of

invalid computation in

woker2 since vertices in

G2 need fewer iterations.

G1

G2

6
a

5
g

6
h 5

m

2
b

3
f

2
i

3
n

3
c

3
e

3
k

2
l3

j

2
d

worker1

worker2

Hotness Balanced Partition

hotness balance

Sum of hotness of G2

and G1 is equal

G1

G2

6
a

5
g

6
h 5

m

2
b

3
f

2
i

3
n

3
c

3
e

3
k

2
l3

j

2
d

worker1

worker2

Hotness Balanced Partition

Fig. 1: vertex balance

G1

G2

6
a

5
g

6
h 5

m

2
b

3
f

2
i

3
n

3
c

3
e

3
k

2
l3

j

2
d

worker1

worker2

Fig. 2: hotness balance
More valid

computation

G1

G2

6
a

5
g

6
h 5

m

2
b

3
f

2
i

3
n

3
c

3
e

3
k

2
l3

j

2
d

worker1

worker2

Hotness Balanced Partition

Fig. 1: vertex balance

G1

G2

6
a

5
g

6
h 5

m

2
b

3
f

2
i

3
n

3
c

3
e

3
k

2
l3

j

2
d

worker1

worker2

Fig. 2: hotness balance
More valid

computation

G1

G2

6
a

5
g

6
h 5

m

2
b

3
f

2
i

3
n

3
c

3
e

3
k

2
l3

j

2
d

worker1

worker2

The worker2 in Fig.2 is more efficient

than worker2 in Fig.1.

Priority Scheduling

6
a

5
g

6
h 5

m

2
b

3
f

2
i

3
n

3
c

3
e

3
k

2
l3

j

2
d

process preferentiallyAccelerate graph computing by selecting hot vertices to process preferentially.

Hotness Balanced Partition

hotness balance

G1

G2

6
a

5
g

6
h 5

m

2
b

3
f

2
i

3
n

3
c

3
e

3
k

2
l3

j

2
d

worker1

worker2

G1

G2

fixed pointsinitial state

Worker1 process a

Worker2 process m

Convergence Progress Bar

hotness balance

G1

G2

6
a

5
g

6
h 5

m

2
b

3
f

2
i

3
n

3
c

3
e

3
k

2
l3

j

2
d

worker1

worker2

G1

G2

fixed pointsinitial state

Hotness Balanced Partition

A hot vertex can make more contributions

to approaching the fixed point.

Convergence Progress Bar

Worker1 process g

Worker2 process n

hotness balance

G1

G2

6
a

5
g

6
h 5

m

2
b

3
f

2
i

3
n

3
c

3
e

3
k

2
l3

j

2
d

worker1

worker2

fixed pointsinitial state

G1

G2

Hotness Balanced Partition

A hot vertex can make more contributions

to approaching the fixed point.

Convergence Progress Bar

Worker1 process h

Worker2 process l

Hotness Balanced Partition

hotness balance

The worker2 is still not as efficient

as we expected, because no matter

how to schedule, worker2 always

processes vertices with low hotness.

G1

G2

6
a

5
g

6
h 5

m

2
b

3
f

2
i

3
n

3
c

3
e

3
k

2
l3

j

2
d

worker1

worker2

The hotness distribution of each partition

should be the same as that of the original

graph.

Partition Goals

• Assign the same amount of vertex hotness to workers

• Minimize the variance between hotness distributions of each
partition and the original graph.

• Minimize the communication cost between partitions.

prioritized iterative graph computations

both synchronous and asynchronous frameworks

Partition Goals

• Assign the same amount of vertex hotness to workers

• Minimize the variance between hotness distributions of each
partition and the original graph.

• Minimize the communication cost between partitions.

HJS distance is to measure the variance

between hotness distributions of each

partition and the original graph.

Partition Goals

• Assign the same amount of vertex hotness to partitions

• Minimize the HJS distance between each partition and the original
graph.

• Minimize the communication cost between partitions.

Partition Goals

• Assign the same amount of vertex hotness to workers

• Minimize the HJS distance between each partition and the original
graph.

• Minimize the communication cost between partitions.

When balancing the hotness of each bin partition.

1. The amount of vertex hotness of each partition is equal.
2. HJS distance between each partition and the original
graph is 0.

Partition Goals

• Balance the hotness of each bin partition.

• Minimize the communication cost between partitions.

The first two partition goals can be combined into one:

Per-Bin Hotness Balanced Partition

Fig. 1: hotness balance Fig. 2: per-bin hotness balance

G1

G2

6
a

5
g

6
h 5

m

2
b

3
f

2
i

3
n

3
c

3
e

3
k

2
l3

j

2
d

worker1

worker2

G1

G2

6
a

5
g

6
h 5

m

2
b

3
f

2
i

3
n

3
c

3
e

3
k

2
l3

j

2
d

worker1

worker2

Per-Bin Hotness Balanced Partition

per-bin hotness balance

The hotness of each partition

is balanced and the distribution

of hotness values of each

partition is the same as that

of the original graph.

Both worker1 and worker2 are efficient

G1

G2

6
a

5
g

6
h 5

m

2
b

3
f

2
i

3
n

3
c

3
e

3
k

2
l3

j

2
d

worker1

worker2

Per-Bin Hotness Balanced Partition

An illustration of Per-Bin hotness balanced partition

Partition each bin into k

hotness balanced partitions.

Maximize the communication

between bins in the same partitions

Minimize the communication

between bins in different partitions.

Hotness Estimation

The vertex with high indegrees always has higher

execution priority and is likely to be hot.

Hotness Estimation

The vertex with high indegrees always has higher

execution priority and is likely to be hot.

0.1

0.5

0.30.8

0.6

0.4

Weights of edges may affect the hotness value

of target vertices.

Hotness Estimation

ℎ𝑣 = ෍

𝑢 ∈𝐼𝑁(𝑣)

𝑤𝑢, 𝑣

σ𝑤∈𝑂𝑈𝑇(𝑢)𝑤𝑢, 𝑤

the hotness of vertex v

Hotness Estimation

ℎ𝑣 = ෍

𝑢 ∈𝐼𝑁(𝑣)

𝑤𝑢, 𝑣

σ𝑤∈𝑂𝑈𝑇(𝑢)𝑤𝑢, 𝑤
𝑐𝑜𝑚𝑢, 𝑣

= ℎ𝑢

the hotness of vertex v the communication of edge eu,v

Streamed Per-Bin Hotness Balanced
Partition

the hotness values

are separated into

3 bins

Bin 1

Bin 2

Bin 3

belong to bin3

smallest hotness

Partition 1 Partition 2 Partition 3

The first partition’s third bin has smallest

hotness, so this vertex is assigned into the

first partition.

We assign each vertex to the partition with

low hotness on the corresponding bin and low

communication cost (edge information is

omitted).

Streamed Per-Bin Hotness Balanced
Partition

the hotness values

are separated into

3 bins

Bin 1

Bin 2

Bin 3

Partition 1 Partition 2 Partition 3

Streamed Per-Bin Hotness Balanced
Partition

the hotness values

are separated into

3 bins

Bin 1

Bin 2

Bin 3

Partition 1 Partition 2 Partition 3

Streamed Per-Bin Hotness Balanced
Partition

the hotness values

are separated into

3 bins

Bin 1

Bin 2

Bin 3

Partition 1 Partition 2 Partition 3

Streamed Per-Bin Hotness Balanced
Partition

where 0 ≤ α ≤ 1, τ > 1, γ > 1, and hji is the
sum of hotness values of i-th partition

in the j-th bin.

Streamed Per-Bin Hotness Balanced
Partition

where 0 ≤ α ≤ 1, τ > 1, γ > 1, and hji is the
sum of hotness values of i-th partition

in the j-th bin.

imbalance cost

Communication cost

Experiment: Preparation

Platform Alibaba Cloud

System Maiter

Cluster
1 master (ecs.cs.large)

4 slaves (ecs.cs.large)

Algorithm PageRank, PHP

Competitors Hash, Fennel1, HotGraph2

Data sets Twitter (TW), LiveJournal (LJ) Hollywood (HW)

1. Tsourakakis, Charalampos, et al. "Fennel: Streaming graph partitioning for massive scale graphs.”
Proceedings of the WSDM 2014.

2. Zhang, Yu, et al. "HotGraph: Efficient asynchronous processing for real-world graphs." IEEE TOC
2016.

Experiments: Runtime Comparison

PageRank PHP

SPb-HBP is our stream-based per-bin hotness balanced partition

Experiments: Communication Cost
Comparison

PageRank PHP

Experiments: Scalability

PageRank PHP

Experiments: Scalability

PageRank PHP

Conclusion

• The analysis of the existing graph partition methods
finds that they are not suitable for asynchronous graph
processing systems.

• A new graph partition idea, hotness balanced partition,
is proposed.

• A stream-based per-bin hotness balanced partition
algorithm is proposed.

Any questions please email

gongsf@stumail.neu.edu.cn

