
Fast Iterative Graph Computing with

Updated Neighbor States

Yijie Zhou1, Shufeng Gong1, Feng Yao1, Hanzhang Chen1, Song Yu1,

Pengxi Liu1, Yanfeng Zhang1, Ge Yu1, Jeffrey Xu Yu2

Northeastern University1, The Chinese University of Hong Kong2

Iterative Computation

• PageRank, SSSP, BFS, ……

• Traversing the entire graph multiple times

Iterative Computation

• PageRank, SSSP, BFS, ……

• Traversing the entire graph multiple times

time
consuming

Accelerate Iterative Computation

• How to accelerate iterative computation?

• Reduce the time per iteration

• Decrease the number of iterations

Vertex State Changes in Iterative Rounds

Synchronous

Vertex State Changes in Iterative Rounds

Synchronous

Vertex State Changes in Iterative Rounds

Synchronous

Vertex State Changes in Iterative Rounds

Synchronous

Vertex State Changes in Iterative Rounds

Synchronous

Vertex State Changes in Iterative Rounds

AsynchronousSynchronous

Vertex State Changes in Iterative Rounds

AsynchronousSynchronous

Vertex State Changes in Iterative Rounds

AsynchronousSynchronous

Vertex State Changes in Iterative Rounds

AsynchronousSynchronous

Vertex State Changes in Iterative Rounds

AsynchronousSynchronous

Asynchronous iteration reduces the
number of rounds because each vertex
can immediately use the latest state
value.

Vertex State Changes in Iterative Rounds

Asynchronous
Asynchronous

with reordered order

Vertex State Changes in Iterative Rounds

Asynchronous
Asynchronous

with reordered order

Converging Quicker After Reordering

Goal

• Construct an efficient vertex processing order to

accelerate the iterative computation.

Challenges

• Which processing order is better?

• Challenge 1. Design a metric to measure the quality of

the processing order.

• How to reorder the vertex to make the iterations

converge faster?

• Challenge 2. Design a vertex reordering method.

Positive/Negative Edge

For an existing edge:

• Processing order 1:

• <u,v> is a positive edge, since v can use u’s latest state in the

same round.

• Processing order 2:

• <u,v> is a negative edge, since v can only use u's latest state in

the next round.

Metric Funtion

• The goal of our reordering method: maximize the quantity of positive edges

• Counts the number of positive edges (, 𝑢 is processed prior to 𝑣)

𝑀 𝑂𝑉 = 𝑛 𝑒𝑝𝑜𝑠 = ෍

(𝑢,𝑣)∈𝐸

𝜒(𝑢, 𝑣)

𝜒 𝑢, 𝑣 = ቊ
1, 𝑖𝑓 𝑢, 𝑣 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒,

0, 𝑖𝑓 𝑢, 𝑣 𝑖𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒.

Intuition: as mentioned before, the more positive edges, the more vertex
state values can be utilized per round, speeding up convergence.

GoGraph

1) Extract high-degree and isolated vertices

2) Divide other vertices

3) Reorder vertices within subgraphs

4) Reorder subgraphs

5) Insert high-degree and isolated vertices

GoGraph

1) Extract high-degree and isolated vertices

Distribution of vertices of different
degrees for scale-free graphs

𝑂𝑉
1 = 𝑑, 𝑒, 𝑐, 𝑏, ℎ, 𝑎, 𝑔, 𝑓

M 𝑂𝑉
1 = 10

𝑂𝑉
2 = ℎ, 𝑎, 𝑐, 𝑑, 𝑒, 𝑔, 𝑓, 𝑏

M 𝑂𝑉
2 = 14

GoGraph

2) Divide other vertices

• Louvain, Metis, …

GoGraph

𝑂𝐺1 = [𝑑, 𝑒]

𝑂𝐺2 = [𝑔, 𝑓]

3) Reorder vertices within subgraphs

• Calculate the M value based on where the vertices are inserted;

• Find the position that maximizes M (maximize the number of

positive edges and minimize the number of negative edges).

GoGraph

4) Reorder subgraphs

• Consider each subgraph as a super vertex;

• Perform the same operation in step 3.

𝑤𝐺1,𝐺2 = {𝑢, 𝑣} 𝑢 ∈ 𝐺𝑖 , 𝑣 ∈ 𝐺𝑗

𝑀 𝑂𝐺 = ෍

(𝐺𝑖,𝐺𝑗)∈𝑃

𝜒(𝐺𝑖 , 𝐺𝑗)

𝜒 𝐺𝑖 , 𝐺𝑗 = ቐ
𝑤𝐺1,𝐺2 , 𝑖𝑓 𝑒 𝐺𝑖,𝐺𝑗

𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒,

0, 𝑖𝑓 𝑒 𝐺𝑖,𝐺𝑗
𝑖𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒.

𝑂𝐺 = [𝑑, 𝑒, 𝑔, 𝑓]

𝑂𝐺1 = [𝑑, 𝑒] 𝑂𝐺2 = [𝑔, 𝑓]

GoGraph

5) Insert high-degree and isolated vertices

[h, a, d, e, g, f, c, b]

Experiments
• Competitors

Degree Sorting, Hub Sorting, Hub Clustering, Rabbit, Gorder

• Workloads
PageRank, SSSP, BFS, PHP

• Environment
Linux server, 98 GB RAM, Ubuntu 22.04 (64-bit), GCC 7.5

• Datasets

Overall performance

Fig. 1 The comparison of runtime

Fig. 2 The comparison of iteration rounds

GoGraph outperforms competitors by an

average of 1.83× in runtime.

GoGraph outperforms competitors by 41%

on average reduction in iteration rounds.

Convergence comparison

Fig. 3 The comparison of convergence speed

• The distance from the state value at time t to the converged state value: 𝑑𝑖𝑠𝑡𝑡 = ෍
𝑣∈𝑉

𝑥∗ −෍
𝑣∈𝑉

𝑥𝑡

GoGraph algorithm consumes 59% of the average time used by competitors (with a minimum

requirement of 37%) to reach convergence.

CPU cache miss

Fig. 4 The comparison of CPU cache miss

GoGraph can reduce the cache miss by 30% on average.

Conclusion

• We propose GoGraph, a graph reordering algorithm

• We propose a metric to measure the efficiency of the

vertex processing order

Thank you for listening!

