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Accelerate Iterative Computation

• How to accelerate iterative computation?

• Reduce the time per iteration

• Decrease the number of iterations
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Vertex State Changes in Iterative Rounds

AsynchronousSynchronous

Asynchronous iteration reduces the 
number of rounds because each vertex 
can immediately use the latest state 
value.
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Converging Quicker After Reordering



Goal

• Construct an efficient vertex processing order to 

accelerate the iterative computation.



Challenges

• Which processing order is better? 

• Challenge 1. Design a metric to measure the quality of 

the processing order.

• How to reorder the vertex to make the iterations

converge faster?

• Challenge 2. Design a vertex reordering method.



Positive/Negative Edge

For an existing edge: 

• Processing order 1:  

• <u,v> is a positive edge, since v can use u’s latest state in the 

same round.

• Processing order 2:

• <u,v> is a negative edge, since v can only use u's latest state in 

the next round.



Metric Funtion

• The goal of our reordering method: maximize the quantity of positive edges

• Counts the number of positive edges (                  , 𝑢 is processed prior to 𝑣)

𝑀 𝑂𝑉 = 𝑛 𝑒𝑝𝑜𝑠 = ෍

(𝑢,𝑣)∈𝐸

𝜒(𝑢, 𝑣)

𝜒 𝑢, 𝑣 = ቊ
1, 𝑖𝑓 𝑢, 𝑣 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒,

0, 𝑖𝑓 𝑢, 𝑣 𝑖𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒.

Intuition: as mentioned before, the more positive edges, the more vertex 
state values can be utilized per round, speeding up convergence.
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GoGraph

1) Extract high-degree and isolated vertices

Distribution of vertices of different 
degrees for scale-free graphs

𝑂𝑉
1 = 𝑑, 𝑒, 𝑐, 𝑏, ℎ, 𝑎, 𝑔, 𝑓

M 𝑂𝑉
1 = 10

𝑂𝑉
2 = ℎ, 𝑎, 𝑐, 𝑑, 𝑒, 𝑔, 𝑓, 𝑏

M 𝑂𝑉
2 = 14



GoGraph

2) Divide other vertices

• Louvain, Metis, …



GoGraph

𝑂𝐺1 = [𝑑, 𝑒]

𝑂𝐺2 = [𝑔, 𝑓]

3) Reorder vertices within subgraphs

• Calculate the M value based on where the vertices are inserted;

• Find the position that maximizes M (maximize the number of 

positive edges and minimize the number of negative edges).



GoGraph

4) Reorder subgraphs

• Consider each subgraph as a super vertex;

• Perform the same operation in step 3.

𝑤𝐺1,𝐺2 = {𝑢, 𝑣} 𝑢 ∈ 𝐺𝑖 , 𝑣 ∈ 𝐺𝑗

𝑀 𝑂𝐺 = ෍

(𝐺𝑖,𝐺𝑗)∈𝑃

𝜒(𝐺𝑖 , 𝐺𝑗)

𝜒 𝐺𝑖 , 𝐺𝑗 = ቐ
𝑤𝐺1,𝐺2 , 𝑖𝑓 𝑒 𝐺𝑖,𝐺𝑗

𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒,

0, 𝑖𝑓 𝑒 𝐺𝑖,𝐺𝑗
𝑖𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒.

𝑂𝐺 = [𝑑, 𝑒, 𝑔, 𝑓]

𝑂𝐺1 = [𝑑, 𝑒] 𝑂𝐺2 = [𝑔, 𝑓]



GoGraph

5) Insert high-degree and isolated vertices

[ h, a, d, e, g, f, c, b ]



Experiments
• Competitors

Degree Sorting, Hub Sorting, Hub Clustering, Rabbit, Gorder

• Workloads
PageRank, SSSP, BFS, PHP

• Environment
Linux server, 98 GB RAM, Ubuntu 22.04 (64-bit), GCC 7.5

• Datasets



Overall performance

Fig. 1 The comparison of runtime

Fig. 2 The comparison of iteration rounds

GoGraph outperforms competitors by an 

average of 1.83× in runtime.

GoGraph outperforms competitors by 41% 

on average reduction in iteration rounds.



Convergence comparison

Fig. 3 The comparison of convergence speed

• The distance from the state value at time t to the converged state value: 𝑑𝑖𝑠𝑡𝑡 = ෍
𝑣∈𝑉

𝑥∗ −෍
𝑣∈𝑉

𝑥𝑡

GoGraph algorithm consumes 59% of the average time used by competitors (with a minimum 

requirement of 37%) to reach convergence.



CPU cache miss

Fig. 4 The comparison of CPU cache miss

GoGraph can reduce the cache miss by 30% on average.



Conclusion

• We propose GoGraph, a graph reordering algorithm

• We propose a metric to measure the efficiency of the 

vertex processing order



Thank you for listening!


